Modules¶
For modules, the execution semantics primarily defines instantiation, which allocates instances for a module and its contained definitions, initializes tables and memories from contained element and data segments, and invokes the start function if present. It also includes invocation of exported functions.
Allocation¶
New instances of functions, tables, memories, globals, tags, element segments, and data segments are allocated in a store \(s\), as defined by the following auxiliary functions.
Functions¶
\({\href{../exec/modules.html#alloc-func}{\mathrm{allocfunc}}}(s, {\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}}, {{\href{../exec/runtime.html#syntax-funcinst}{\mathit{code}}}}, {\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}})\)¶
Let \({\href{../exec/runtime.html#syntax-funcinst}{\mathit{funcinst}}}\) be the function instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-funcinst}{\mathsf{type}}~{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}},\; \href{../exec/runtime.html#syntax-funcinst}{\mathsf{module}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}},\; \href{../exec/runtime.html#syntax-funcinst}{\mathsf{code}}~{{\href{../exec/runtime.html#syntax-funcinst}{\mathit{code}}}} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}\).
Append \({\href{../exec/runtime.html#syntax-funcinst}{\mathit{funcinst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}\).
Return \(a\).
Tables¶
\({\href{../exec/modules.html#alloc-table}{\mathrm{alloctable}}}(s, {\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~{\mathit{rt}}, {\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}})\)¶
Let \({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}}\) be the table instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-tableinst}{\mathsf{type}}~({\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~{\mathit{rt}}),\; \href{../exec/runtime.html#syntax-tableinst}{\mathsf{elem}}~{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}^{i}} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tables}}\).
Append \({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tables}}\).
Return \(a\).
Memories¶
\({\href{../exec/modules.html#alloc-mem}{\mathrm{allocmem}}}(s, {\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~\href{../syntax/types.html#syntax-memtype}{\mathsf{page}})\)¶
Let \({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}}\) be the memory instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-meminst}{\mathsf{type}}~({\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~\href{../syntax/types.html#syntax-memtype}{\mathsf{page}}),\; \href{../exec/runtime.html#syntax-meminst}{\mathsf{bytes}}~{\mathtt{0x00}^{i \cdot 64 \, {\mathrm{Ki}}}} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{mems}}\).
Append \({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{mems}}\).
Return \(a\).
\({\href{../exec/modules.html#alloc-tag}{\mathrm{alloctag}}}(s, {\href{../valid/conventions.html#syntax-tagtype}{\mathit{tagtype}}})\)¶
Let \({\href{../exec/runtime.html#syntax-taginst}{\mathit{taginst}}}\) be the tag instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-taginst}{\mathsf{type}}~{\href{../valid/conventions.html#syntax-tagtype}{\mathit{tagtype}}} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tags}}\).
Append \({\href{../exec/runtime.html#syntax-taginst}{\mathit{taginst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tags}}\).
Return \(a\).
Globals¶
\({\href{../exec/modules.html#alloc-global}{\mathrm{allocglobal}}}(s, {\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}, {\href{../exec/runtime.html#syntax-val}{\mathit{val}}})\)¶
Let \({\href{../exec/runtime.html#syntax-globalinst}{\mathit{globalinst}}}\) be the global instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-globalinst}{\mathsf{type}}~{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}},\; \href{../exec/runtime.html#syntax-globalinst}{\mathsf{value}}~{\href{../exec/runtime.html#syntax-val}{\mathit{val}}} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{globals}}\).
Append \({\href{../exec/runtime.html#syntax-globalinst}{\mathit{globalinst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{globals}}\).
Return \(a\).
Element segments¶
\({\href{../exec/modules.html#alloc-elem}{\mathrm{allocelem}}}(s, {\href{../syntax/types.html#syntax-elemtype}{\mathit{elemtype}}}, {{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}^\ast})\)¶
Let \({\href{../exec/runtime.html#syntax-eleminst}{\mathit{eleminst}}}\) be the element instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-eleminst}{\mathsf{type}}~{\href{../syntax/types.html#syntax-elemtype}{\mathit{elemtype}}},\; \href{../exec/runtime.html#syntax-eleminst}{\mathsf{elem}}~{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}^\ast} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{elems}}\).
Append \({\href{../exec/runtime.html#syntax-eleminst}{\mathit{eleminst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{elems}}\).
Return \(a\).
Data segments¶
\({\href{../exec/modules.html#alloc-data}{\mathrm{allocdata}}}(s, \href{../valid/modules.html#valid-data}{\mathsf{ok}}, {{\href{../syntax/values.html#syntax-byte}{\mathit{byte}}}^\ast})\)¶
Let \({\href{../exec/runtime.html#syntax-datainst}{\mathit{datainst}}}\) be the data instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-datainst}{\mathsf{bytes}}~{{\href{../syntax/values.html#syntax-byte}{\mathit{byte}}}^\ast} \}\end{array}\).
Let \(a\) be the length of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{datas}}\).
Append \({\href{../exec/runtime.html#syntax-datainst}{\mathit{datainst}}}\) to \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{datas}}\).
Return \(a\).
Growing tables¶
\({\href{../exec/modules.html#grow-table}{\mathrm{growtable}}}({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}}, n, r)\)¶
Let \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-tableinst}{\mathsf{type}}~({\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~{\mathit{rt}}),\; \href{../exec/runtime.html#syntax-tableinst}{\mathsf{elem}}~{{r'}^\ast} \}\end{array}\) be the destructuring of \({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}}\).
If \({|{{r'}^\ast}|} + n > j\), then:
Fail.
Let \({i'}\) be \({|{{r'}^\ast}|} + n\).
Let \({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}'}\) be the table instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-tableinst}{\mathsf{type}}~({\mathit{at}}~{}[ {i'} \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~{\mathit{rt}}),\; \href{../exec/runtime.html#syntax-tableinst}{\mathsf{elem}}~{{r'}^\ast}~{r^{n}} \}\end{array}\).
Return \({\href{../exec/runtime.html#syntax-tableinst}{\mathit{tableinst}}'}\).
Growing memories¶
\({\href{../exec/modules.html#grow-mem}{\mathrm{growmem}}}({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}}, n)\)¶
Let \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-meminst}{\mathsf{type}}~({\mathit{at}}~{}[ i \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~\href{../syntax/types.html#syntax-memtype}{\mathsf{page}}),\; \href{../exec/runtime.html#syntax-meminst}{\mathsf{bytes}}~{b^\ast} \}\end{array}\) be the destructuring of \({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}}\).
If \({|{b^\ast}|} / (64 \, {\mathrm{Ki}}) + n > j\), then:
Fail.
Let \({i'}\) be \({|{b^\ast}|} / (64 \, {\mathrm{Ki}}) + n\).
Let \({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}'}\) be the memory instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-meminst}{\mathsf{type}}~({\mathit{at}}~{}[ {i'} \href{../syntax/types.html#syntax-limits}{\,{..}\,} j ]~\href{../syntax/types.html#syntax-memtype}{\mathsf{page}}),\; \href{../exec/runtime.html#syntax-meminst}{\mathsf{bytes}}~{b^\ast}~{\mathtt{0x00}^{n \cdot 64 \, {\mathrm{Ki}}}} \}\end{array}\).
Return \({\href{../exec/runtime.html#syntax-meminst}{\mathit{meminst}}'}\).
Modules¶
\({\href{../exec/modules.html#alloc-module}{\mathrm{allocmodule}}}(s, {\href{../syntax/modules.html#syntax-module}{\mathit{module}}}, {{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}, {{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{g}}^\ast}, {{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{t}}^\ast}, {{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{e}}^\ast}^\ast})\)¶
Let \((\href{../syntax/modules.html#syntax-module}{\mathsf{module}}~{{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}^\ast}~{{\href{../syntax/modules.html#syntax-import}{\mathit{import}}}^\ast}~{{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}~{{\href{../syntax/modules.html#syntax-global}{\mathit{global}}}^\ast}~{{\href{../syntax/modules.html#syntax-table}{\mathit{table}}}^\ast}~{{\href{../syntax/modules.html#syntax-mem}{\mathit{mem}}}^\ast}~{{\href{../syntax/modules.html#syntax-tag}{\mathit{tag}}}^\ast}~{{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}~{{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}~{{\href{../syntax/modules.html#syntax-start}{\mathit{start}}}^?}~{{\href{../syntax/modules.html#syntax-export}{\mathit{export}}}^\ast})\) be the destructuring of \({\href{../syntax/modules.html#syntax-module}{\mathit{module}}}\).
Let \({{\mathit{fa}}_{\mathsf{i}}^\ast}\) be \({\href{../exec/runtime.html#syntax-externaddr}{\mathrm{funcs}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\).
Let \({{\mathit{ga}}_{\mathsf{i}}^\ast}\) be \({\href{../exec/runtime.html#syntax-externaddr}{\mathrm{globals}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\).
Let \({{\mathit{aa}}_{\mathsf{i}}^\ast}\) be \({\href{../exec/runtime.html#syntax-externaddr}{\mathrm{tags}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\).
Let \({{\mathit{ma}}_{\mathsf{i}}^\ast}\) be \({\href{../exec/runtime.html#syntax-externaddr}{\mathrm{mems}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\).
Let \({{\mathit{ta}}_{\mathsf{i}}^\ast}\) be \({\href{../exec/runtime.html#syntax-externaddr}{\mathrm{tables}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\).
Let \({{\mathit{fa}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}|} + i_{\mathsf{f}}\) for all \(i_{\mathsf{f}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}|} - 1\).
Let \({{\mathit{ga}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{globals}}|} + i_{\mathsf{g}}\) for all \(i_{\mathsf{g}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-global}{\mathit{global}}}^\ast}|} - 1\).
Let \({{\mathit{ta}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tables}}|} + i_{\mathsf{t}}\) for all \(i_{\mathsf{t}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-table}{\mathit{table}}}^\ast}|} - 1\).
Let \({{\mathit{aa}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{tags}}|} + i_{\mathsf{a}}\) for all \(i_{\mathsf{a}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-tag}{\mathit{tag}}}^\ast}|} - 1\).
Let \({{\mathit{ma}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{mems}}|} + i_{\mathsf{m}}\) for all \(i_{\mathsf{m}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-mem}{\mathit{mem}}}^\ast}|} - 1\).
Let \({{\mathit{ea}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{elems}}|} + i_{\mathsf{e}}\) for all \(i_{\mathsf{e}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}|} - 1\).
Let \({{\mathit{da}}^\ast}\) be \({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{datas}}|} + i_{\mathsf{d}}\) for all \(i_{\mathsf{d}}\) from \(0\) to \({|{{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}|} - 1\).
Let \({(\href{../syntax/modules.html#syntax-mem}{\mathsf{memory}}~{\href{../syntax/types.html#syntax-memtype}{\mathit{memtype}}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-mem}{\mathit{mem}}}^\ast}\).
Let \({{\mathit{dt}}^\ast}\) be \({{{\href{../exec/modules.html#alloc-type}{\mathrm{alloctype}}}^\ast}}{({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}^\ast})}\).
Let \({(\href{../syntax/modules.html#syntax-tag}{\mathsf{tag}}~y)^\ast}\) be \({{\href{../syntax/modules.html#syntax-tag}{\mathit{tag}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-data}{\mathsf{data}}~{{\href{../syntax/values.html#syntax-byte}{\mathit{byte}}}^\ast}~{\href{../syntax/modules.html#syntax-datamode}{\mathit{datamode}}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-global}{\mathsf{global}}~{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{g}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-global}{\mathit{global}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-table}{\mathsf{table}}~{\href{../syntax/types.html#syntax-tabletype}{\mathit{tabletype}}}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{t}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-table}{\mathit{table}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-elem}{\mathsf{elem}}~{\href{../syntax/types.html#syntax-elemtype}{\mathit{elemtype}}}~{{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{e}}^\ast}~{\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-func}{\mathsf{func}}~x~{{\href{../syntax/modules.html#syntax-local}{\mathit{local}}}^\ast}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{f}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}\).
Let \({{\mathit{xi}}^\ast}\) be \({{{\href{../exec/modules.html#alloc-export}{\mathrm{allocexport}}}^\ast}}{(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{funcs}}~{{\mathit{fa}}_{\mathsf{i}}^\ast}~{{\mathit{fa}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{globals}}~{{\mathit{ga}}_{\mathsf{i}}^\ast}~{{\mathit{ga}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tables}}~{{\mathit{ta}}_{\mathsf{i}}^\ast}~{{\mathit{ta}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{mems}}~{{\mathit{ma}}_{\mathsf{i}}^\ast}~{{\mathit{ma}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tags}}~{{\mathit{aa}}_{\mathsf{i}}^\ast}~{{\mathit{aa}}^\ast} \}\end{array}, {{\href{../syntax/modules.html#syntax-export}{\mathit{export}}}^\ast})}\).
Let \({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}\) be the module instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{types}}~{{\mathit{dt}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{funcs}}~{{\mathit{fa}}_{\mathsf{i}}^\ast}~{{\mathit{fa}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{globals}}~{{\mathit{ga}}_{\mathsf{i}}^\ast}~{{\mathit{ga}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tables}}~{{\mathit{ta}}_{\mathsf{i}}^\ast}~{{\mathit{ta}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{mems}}~{{\mathit{ma}}_{\mathsf{i}}^\ast}~{{\mathit{ma}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tags}}~{{\mathit{aa}}_{\mathsf{i}}^\ast}~{{\mathit{aa}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{elems}}~{{\mathit{ea}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{datas}}~{{\mathit{da}}^\ast},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{exports}}~{{\mathit{xi}}^\ast} \}\end{array}\).
Let \({{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-func}{\mathrm{allocfunc}}}^\ast}}{(s, {{{\mathit{dt}}^\ast}{}[x]^\ast}, {(\href{../syntax/modules.html#syntax-func}{\mathsf{func}}~x~{{\href{../syntax/modules.html#syntax-local}{\mathit{local}}}^\ast}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{f}})^\ast}, {{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}^{{|{{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}|}}})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}_0^\ast} = {{\mathit{fa}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-globaladdr}{\mathit{globaladdr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-global}{\mathrm{allocglobal}}}^\ast}}{(s, {{{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}}{{}[ {\href{../valid/conventions.html#notation-subst}{\mathrel{:=}}}\, {{\mathit{dt}}^\ast} ]}^\ast}, {{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{g}}^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-globaladdr}{\mathit{globaladdr}}}_0^\ast} = {{\mathit{ga}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-tableaddr}{\mathit{tableaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-table}{\mathrm{alloctable}}}^\ast}}{(s, {{{\href{../syntax/types.html#syntax-tabletype}{\mathit{tabletype}}}}{{}[ {\href{../valid/conventions.html#notation-subst}{\mathrel{:=}}}\, {{\mathit{dt}}^\ast} ]}^\ast}, {{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{t}}^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-tableaddr}{\mathit{tableaddr}}}_0^\ast} = {{\mathit{ta}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-memaddr}{\mathit{memaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-mem}{\mathrm{allocmem}}}^\ast}}{(s, {{{\href{../syntax/types.html#syntax-memtype}{\mathit{memtype}}}}{{}[ {\href{../valid/conventions.html#notation-subst}{\mathrel{:=}}}\, {{\mathit{dt}}^\ast} ]}^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-memaddr}{\mathit{memaddr}}}_0^\ast} = {{\mathit{ma}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-tagaddr}{\mathit{tagaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-tag}{\mathrm{alloctag}}}^\ast}}{(s, {{{\mathit{dt}}^\ast}{}[y]^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-tagaddr}{\mathit{tagaddr}}}_0^\ast} = {{\mathit{aa}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-elemaddr}{\mathit{elemaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-elem}{\mathrm{allocelem}}}^\ast}}{(s, {{{\href{../syntax/types.html#syntax-elemtype}{\mathit{elemtype}}}}{{}[ {\href{../valid/conventions.html#notation-subst}{\mathrel{:=}}}\, {{\mathit{dt}}^\ast} ]}^\ast}, {{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{e}}^\ast}^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-elemaddr}{\mathit{elemaddr}}}_0^\ast} = {{\mathit{ea}}^\ast}\).
Let \({{\href{../exec/runtime.html#syntax-dataaddr}{\mathit{dataaddr}}}_0^\ast}\) be \({{{\href{../exec/modules.html#alloc-data}{\mathrm{allocdata}}}^\ast}}{(s, {\href{../valid/modules.html#valid-data}{\mathsf{ok}}^{{|{{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}|}}}, {{{\href{../syntax/values.html#syntax-byte}{\mathit{byte}}}^\ast}^\ast})}\).
Assert: Due to validation, \({{\href{../exec/runtime.html#syntax-dataaddr}{\mathit{dataaddr}}}_0^\ast} = {{\mathit{da}}^\ast}\).
Return \({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}\).
Here, the notation \(\mathrm{allocx}^\ast\) is shorthand for multiple allocations of object kind \(X\), defined as follows:
For types, however, allocation is defined in terms of rolling and substitution of all preceding types to produce a list of closed defined types:
\({{{\href{../exec/modules.html#alloc-type}{\mathrm{alloctype}}}^\ast}}{({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}''}^\ast})}\)¶
If \({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}''}^\ast} = \epsilon\), then:
Return \(\epsilon\).
Let \({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}'}^\ast}~{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}\) be \({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}''}^\ast}\).
Let \((\href{../syntax/modules.html#syntax-type}{\mathsf{type}}~{\href{../syntax/types.html#syntax-rectype}{\mathit{rectype}}})\) be the destructuring of \({\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}\).
Let \({{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}'}^\ast}\) be \({{{\href{../exec/modules.html#alloc-type}{\mathrm{alloctype}}}^\ast}}{({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}'}^\ast})}\).
Let \(x\) be the length of \({{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}'}^\ast}\).
Let \({{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}}^\ast}\) be \({{{{{\href{../valid/conventions.html#aux-roll-deftype}{\mathrm{roll}}}}_{x}^\ast}}{({\href{../syntax/types.html#syntax-rectype}{\mathit{rectype}}})}}{{}[ {\href{../valid/conventions.html#notation-subst}{\mathrel{:=}}}\, {{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}'}^\ast} ]}\).
Return \({{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}'}^\ast}~{{\href{../valid/conventions.html#syntax-deftype}{\mathit{deftype}}}^\ast}\).
Finally, export instances are produced with the help of the following definition:
\({\href{../exec/modules.html#alloc-export}{\mathrm{allocexport}}}({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}, \href{../syntax/modules.html#syntax-export}{\mathsf{export}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}}~{\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}})\)¶
If \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\) is some \(\href{../syntax/modules.html#syntax-externidx}{\mathsf{func}}\) \({\href{../syntax/modules.html#syntax-funcidx}{\mathit{funcidx}}}\), then:
Let \((\href{../syntax/modules.html#syntax-externidx}{\mathsf{func}}~x)\) be the destructuring of \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\).
Return \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-exportinst}{\mathsf{name}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}},\; \href{../exec/runtime.html#syntax-exportinst}{\mathsf{addr}}~(\href{../exec/runtime.html#syntax-externaddr}{\mathsf{func}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{funcs}}{}[x]) \}\end{array}\).
If \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\) is some \(\href{../syntax/modules.html#syntax-externidx}{\mathsf{global}}\) \({\href{../syntax/modules.html#syntax-globalidx}{\mathit{globalidx}}}\), then:
Let \((\href{../syntax/modules.html#syntax-externidx}{\mathsf{global}}~x)\) be the destructuring of \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\).
Return \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-exportinst}{\mathsf{name}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}},\; \href{../exec/runtime.html#syntax-exportinst}{\mathsf{addr}}~(\href{../exec/runtime.html#syntax-externaddr}{\mathsf{global}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{globals}}{}[x]) \}\end{array}\).
If \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\) is some \(\href{../syntax/modules.html#syntax-externidx}{\mathsf{table}}\) \({\href{../syntax/modules.html#syntax-tableidx}{\mathit{tableidx}}}\), then:
Let \((\href{../syntax/modules.html#syntax-externidx}{\mathsf{table}}~x)\) be the destructuring of \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\).
Return \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-exportinst}{\mathsf{name}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}},\; \href{../exec/runtime.html#syntax-exportinst}{\mathsf{addr}}~(\href{../exec/runtime.html#syntax-externaddr}{\mathsf{table}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tables}}{}[x]) \}\end{array}\).
If \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\) is some \(\href{../syntax/modules.html#syntax-externidx}{\mathsf{memory}}\) \({\href{../syntax/modules.html#syntax-memidx}{\mathit{memidx}}}\), then:
Let \((\href{../syntax/modules.html#syntax-externidx}{\mathsf{memory}}~x)\) be the destructuring of \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\).
Return \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-exportinst}{\mathsf{name}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}},\; \href{../exec/runtime.html#syntax-exportinst}{\mathsf{addr}}~(\href{../exec/runtime.html#syntax-externaddr}{\mathsf{mem}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{mems}}{}[x]) \}\end{array}\).
Assert: Due to validation, \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\) is some \(\href{../syntax/modules.html#syntax-externidx}{\mathsf{tag}}\) \({\href{../syntax/modules.html#syntax-tagidx}{\mathit{tagidx}}}\).
Let \((\href{../syntax/modules.html#syntax-externidx}{\mathsf{tag}}~x)\) be the destructuring of \({\href{../syntax/modules.html#syntax-externidx}{\mathit{externidx}}}\).
Return \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-exportinst}{\mathsf{name}}~{\href{../syntax/values.html#syntax-name}{\mathit{name}}},\; \href{../exec/runtime.html#syntax-exportinst}{\mathsf{addr}}~(\href{../exec/runtime.html#syntax-externaddr}{\mathsf{tag}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{tags}}{}[x]) \}\end{array}\).
Note
The definition of module allocation is mutually recursive with the allocation of its associated functions, because the resulting module instance is passed to the allocators as an argument, in order to form the necessary closures. In an implementation, this recursion is easily unraveled by mutating one or the other in a secondary step.
Instantiation¶
Given a store \(s\), a \({\href{../syntax/modules.html#syntax-module}{\mathit{module}}}\) is instantiated with a list of external addresses \({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}\) supplying the required imports as follows.
Instantiation checks that the module is valid and the provided imports match the declared types, and may fail with an error otherwise. Instantiation can also result in an exception or trap when initializing a table or memory from an active segment or when executing the start function. It is up to the embedder to define how such conditions are reported.
\({\href{../exec/modules.html#exec-instantiation}{\mathrm{instantiate}}}(s, {\href{../syntax/modules.html#syntax-module}{\mathit{module}}}, {{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})\)¶
If \({\href{../syntax/modules.html#syntax-module}{\mathit{module}}}\) is not valid, then:
Fail.
Let \({{\mathit{xt}}_{\mathsf{i}}^\ast}~\mathrel{\href{../valid/modules.html#syntax-moduletype}{\rightarrow}}~{{\mathit{xt}}_{\mathsf{e}}^\ast}\) be the destructuring of the type of \({\href{../syntax/modules.html#syntax-module}{\mathit{module}}}\).
Let \((\href{../syntax/modules.html#syntax-module}{\mathsf{module}}~{{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}^\ast}~{{\href{../syntax/modules.html#syntax-import}{\mathit{import}}}^\ast}~{{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}~{{\href{../syntax/modules.html#syntax-global}{\mathit{global}}}^\ast}~{{\href{../syntax/modules.html#syntax-table}{\mathit{table}}}^\ast}~{{\href{../syntax/modules.html#syntax-mem}{\mathit{mem}}}^\ast}~{{\href{../syntax/modules.html#syntax-tag}{\mathit{tag}}}^\ast}~{{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}~{{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}~{{\href{../syntax/modules.html#syntax-start}{\mathit{start}}}^?}~{{\href{../syntax/modules.html#syntax-export}{\mathit{export}}}^\ast})\) be the destructuring of \({\href{../syntax/modules.html#syntax-module}{\mathit{module}}}\).
If \({|{{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}|} \neq {|{{\mathit{xt}}_{\mathsf{i}}^\ast}|}\), then:
Fail.
For all \({\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}\) in \({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}\), and corresponding \({\mathit{xt}}_{\mathsf{i}}\) in \({{\mathit{xt}}_{\mathsf{i}}^\ast}\):
If \({\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}\) is not valid with type \({\mathit{xt}}_{\mathsf{i}}\), then:
Fail.
Let \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{d}}^\ast}\) be the concatenation of \({{{\href{../exec/modules.html#aux-rundata}{\mathrm{rundata}}}}_{i_{\mathsf{d}}}({{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}{}[i_{\mathsf{d}}])^{i_{\mathsf{d}}<{|{{\href{../syntax/modules.html#syntax-data}{\mathit{data}}}^\ast}|}}}\).
Let \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{e}}^\ast}\) be the concatenation of \({{{\href{../exec/modules.html#aux-runelem}{\mathrm{runelem}}}}_{i_{\mathsf{e}}}({{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}{}[i_{\mathsf{e}}])^{i_{\mathsf{e}}<{|{{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}|}}}\).
Let \({(\href{../syntax/modules.html#syntax-start}{\mathsf{start}}~x)^?}\) be \({{\href{../syntax/modules.html#syntax-start}{\mathit{start}}}^?}\).
Let \({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}_0\) be the module instance \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{types}}~{{{\href{../exec/modules.html#alloc-type}{\mathrm{alloctype}}}^\ast}}{({{\href{../syntax/types.html#syntax-rectype}{\mathit{type}}}^\ast})},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{funcs}}~{\href{../exec/runtime.html#syntax-externaddr}{\mathrm{funcs}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast})~{({|s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}|} + i_{\mathsf{f}})^{i_{\mathsf{f}}<{|{{\href{../syntax/modules.html#syntax-func}{\mathit{func}}}^\ast}|}}},\; \href{../exec/runtime.html#syntax-moduleinst}{\mathsf{globals}}~{\href{../exec/runtime.html#syntax-externaddr}{\mathrm{globals}}}({{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}) \}\end{array}\).
Let \({(\href{../syntax/modules.html#syntax-table}{\mathsf{table}}~{\href{../syntax/types.html#syntax-tabletype}{\mathit{tabletype}}}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{t}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-table}{\mathit{table}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-global}{\mathsf{global}}~{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}~{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{g}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-global}{\mathit{global}}}^\ast}\).
Let \({(\href{../syntax/modules.html#syntax-elem}{\mathsf{elem}}~{\href{../syntax/types.html#syntax-reftype}{\mathit{reftype}}}~{{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{e}}^\ast}~{\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}})^\ast}\) be \({{\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}}^\ast}\).
Let \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{s}}^?}\) be \({(\href{../syntax/instructions.html#syntax-instr-control}{\mathsf{call}}~x)^?}\).
Let \(z\) be the state \((s, \{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-frame}{\mathsf{module}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}_0 \}\end{array})\).
Let F be the \(\mathsf{frame}\) \(z{.}\href{../exec/runtime.html#syntax-store}{\mathsf{frame}}\).
Push the \(\mathsf{frame}\) F.
Let \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{g}}^\ast}\) be \({{{\href{../exec/modules.html#eval-globals}{\mathrm{evalglobal}}}^\ast}}{(z, {{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}^\ast}, {{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{g}}^\ast})}\).
Pop the \(\mathsf{frame}\) F from the stack.
Let F be the \(\mathsf{frame}\) \(f\).
Push the \(\mathsf{frame}\) F.
Let \({{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{t}}^\ast}\) be the result of evaluating \({{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{t}}^\ast}\) with state \(z\).
Pop the \(\mathsf{frame}\) F from the stack.
Let F be the \(\mathsf{frame}\) \(f\).
Push the \(\mathsf{frame}\) F.
Let \({{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{e}}^\ast}^\ast}\) be the result of evaluating \({{{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}_{\mathsf{e}}^\ast}^\ast}\) with state \(z\).
Pop the \(\mathsf{frame}\) F from the stack.
Let \({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}\) be \({\href{../exec/modules.html#alloc-module}{\mathrm{allocmodule}}}(s, {\href{../syntax/modules.html#syntax-module}{\mathit{module}}}, {{\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}}^\ast}, {{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{g}}^\ast}, {{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{t}}^\ast}, {{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{e}}^\ast}^\ast})\).
Let \(f\) be the frame \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-frame}{\mathsf{module}}~{\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}} \}\end{array}\).
Let F be the \(\mathsf{frame}\) \(f\).
Push the \(\mathsf{frame}\) F.
Execute the sequence \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{e}}^\ast}\).
Execute the sequence \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{d}}^\ast}\).
If \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{s}}^?}\) is defined, then:
Let \({\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_0\) be \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_{\mathsf{s}}^?}\).
Execute the instruction \({\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}_0\).
Pop the \(\mathsf{frame}\) F from the stack.
Return \(f{.}\mathsf{module}\).
If \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\) is not valid, then:
Fail.
Assert: \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\) is valid with external types \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}_{\mathrm{im}}^m\) classifying its imports.
If the number \(m\) of imports is not equal to the number \(n\) of provided external addresses, then:
Fail.
For each external address \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}_i\) in \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}^n\) and external type \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}'_i\) in \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}_{\mathrm{im}}^n\), do:
If \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}_i\) is not valid with an external type \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}_i\) in store \(S\), then:
Fail.
Let \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}''_i\) be the external type obtained by instantiating \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}'_i\) in \(\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}\) defined below.
If \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}_i\) does not match \(\href{../syntax/types.html#syntax-externtype}{\mathit{externtype}}''_i\), then:
Fail.
Let \(F\) be the auxiliary frame \(\{ \href{../exec/runtime.html#syntax-frame}{\mathsf{module}}~\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}, \href{../exec/runtime.html#syntax-frame}{\mathsf{locals}}~\epsilon \}\), that consists of the final module instance \(\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}\), defined below.
Push the frame \(F\) to the stack.
Let \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{g}}^\ast\) be the list of global initialization values determined by \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\) and \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}^n\). These may be calculated as follows.
For each global \(\href{../syntax/modules.html#syntax-global}{\mathit{global}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{globals}}\), do:
Let \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{g}i}\) be the result of evaluating the initializer expression \(\href{../syntax/modules.html#syntax-global}{\mathit{global}}_i.\href{../syntax/modules.html#syntax-global}{\mathsf{init}}\).
Assert: due to validation, the frame \(F\) is now on the top of the stack.
Let \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{g}}^\ast\) be the concatenation of \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{g}i}\) in index order.
Let \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{t}}^\ast\) be the list of table initialization references determined by \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\) and \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}^n\). These may be calculated as follows.
For each table \(\href{../syntax/modules.html#syntax-table}{\mathit{table}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{tables}}\), do:
Let \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{t}i}\) be the result of evaluating the initializer expression \(\href{../syntax/modules.html#syntax-table}{\mathit{table}}_i.\href{../syntax/modules.html#syntax-table}{\mathsf{init}}\).
Assert: due to validation, \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{t}i}\) is a reference.
Let \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{t}i}\) be the reference \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{t}i}\).
Assert: due to validation, the frame \(F\) is now on the top of the stack.
Let \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{t}}^\ast\) be the concatenation of \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{ti}\) in index order.
Let \((\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{e}}^\ast)^\ast\) be the list of reference lists determined by the element segments in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\). These may be calculated as follows.
For each element segment \(\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{elems}}\), and for each element expression \(\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}_{ij}\) in \(\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}_i.\href{../syntax/modules.html#syntax-elem}{\mathsf{init}}\), do:
Let \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{ij}\) be the result of evaluating the initializer expression \(\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}_{ij}\).
Let \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}^\ast_i\) be the concatenation of function elements \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{ij}\) in order of index \(j\).
Let \((\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{e}}^\ast)^\ast\) be the concatenation of function element lists \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}^\ast_i\) in order of index \(i\).
Let \(\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}\) be a new module instance allocated from \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}\) in store \(S\) with imports \(\href{../exec/runtime.html#syntax-externaddr}{\mathit{externaddr}}^n\), global initializer values \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{g}}^\ast\), table initializer values \(\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{t}}^\ast\), and element segment contents \((\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}_{\mathrm{e}}^\ast)^\ast\), and let \(S'\) be the extended store produced by module allocation.
For each element segment \(\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{elems}}\) whose mode is of the form \(\href{../syntax/modules.html#syntax-elemmode}{\mathsf{active}}~\{ \href{../syntax/modules.html#syntax-elem}{\mathsf{table}}~\href{../syntax/modules.html#syntax-tableidx}{\mathit{tableidx}}_i, \href{../syntax/modules.html#syntax-elem}{\mathsf{offset}}~\mathit{einstr}^\ast_i~\href{../syntax/instructions.html#syntax-instr-control}{\mathsf{end}} \}\), do:
Let \(n\) be the length of the list \(\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}_i.\href{../syntax/modules.html#syntax-elem}{\mathsf{init}}\).
Execute the instruction sequence \(\mathit{einstr}^\ast_i\).
Execute the instruction \(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}.\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~0\).
Execute the instruction \(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}.\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~n\).
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{table{.}init}}~\href{../syntax/modules.html#syntax-tableidx}{\mathit{tableidx}}_i~i\).
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{elem{.}drop}}~i\).
For each element segment \(\href{../syntax/modules.html#syntax-elem}{\mathit{elem}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{elems}}\) whose mode is of the form \(\href{../syntax/modules.html#syntax-elemmode}{\mathsf{declare}}\), do:
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{elem{.}drop}}~i\).
For each data segment \(\href{../syntax/modules.html#syntax-data}{\mathit{data}}_i\) in \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{datas}}\) whose mode is of the form \(\href{../syntax/modules.html#syntax-datamode}{\mathsf{active}}~\{ \href{../syntax/modules.html#syntax-data}{\mathsf{memory}}~\href{../syntax/modules.html#syntax-memidx}{\mathit{memidx}}_i, \href{../syntax/modules.html#syntax-data}{\mathsf{offset}}~\mathit{dinstr}^\ast_i~\href{../syntax/instructions.html#syntax-instr-control}{\mathsf{end}} \}\), do:
Let \(n\) be the length of the list \(\href{../syntax/modules.html#syntax-data}{\mathit{data}}_i.\href{../syntax/modules.html#syntax-data}{\mathsf{init}}\).
Execute the instruction sequence \(\mathit{dinstr}^\ast_i\).
Execute the instruction \(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}.\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~0\).
Execute the instruction \(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}.\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~n\).
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-memory}{\mathsf{memory{.}init}}~i\).
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-memory}{\mathsf{data{.}drop}}~i\).
If the start function \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{start}}\) is not empty, then:
Let \(\href{../syntax/modules.html#syntax-start}{\mathit{start}}\) be the start function \(\href{../syntax/modules.html#syntax-module}{\mathit{module}}.\href{../syntax/modules.html#syntax-module}{\mathsf{start}}\).
Execute the instruction \(\href{../syntax/instructions.html#syntax-instr-control}{\mathsf{call}}~\href{../syntax/modules.html#syntax-start}{\mathit{start}}.\href{../syntax/modules.html#syntax-start}{\mathsf{func}}\).
Assert: due to validation, the frame \(F\) is now on the top of the stack.
Pop the frame \(F\) from the stack.
where:
\({{{\href{../exec/modules.html#eval-globals}{\mathrm{evalglobal}}}^\ast}}{(z, {{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}^\ast}, {{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}''}^\ast})}\)¶
If \({{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}^\ast} = \epsilon\) and \({{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}''}^\ast} = \epsilon\), then:
Return \(\epsilon\).
Assert: Due to validation, \({|{{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}''}^\ast}|} \geq 1\).
Let \({\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}~{{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}'}^\ast}\) be \({{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}''}^\ast}\).
Assert: Due to validation, \({|{{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}^\ast}|} \geq 1\).
Let \({\mathit{gt}}~{{\mathit{gt}'}^\ast}\) be \({{\href{../syntax/types.html#syntax-globaltype}{\mathit{globaltype}}}^\ast}\).
Let \((s, f)\) be the destructuring of \(z\).
Let \({\href{../exec/runtime.html#syntax-val}{\mathit{val}}}\) be the result of evaluating \({\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}\) with state \(z\).
Let \(a\) be \({\href{../exec/modules.html#alloc-global}{\mathrm{allocglobal}}}(s, {\mathit{gt}}, {\href{../exec/runtime.html#syntax-val}{\mathit{val}}})\).
Append \(a\) to \(f{.}\href{../exec/runtime.html#syntax-frame}{\mathsf{module}}{.}\href{../exec/runtime.html#syntax-moduleinst}{\mathsf{globals}}\).
Let \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}'}^\ast}\) be \({{{\href{../exec/modules.html#eval-globals}{\mathrm{evalglobal}}}^\ast}}{((s, f), {{\mathit{gt}'}^\ast}, {{\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}'}^\ast})}\).
Return \({\href{../exec/runtime.html#syntax-val}{\mathit{val}}}~{{\href{../exec/runtime.html#syntax-val}{\mathit{val}}'}^\ast}\).
\({{\href{../exec/modules.html#aux-runelem}{\mathrm{runelem}}}}_{x}(\href{../syntax/modules.html#syntax-elem}{\mathsf{elem}}~{\mathit{rt}}~{e^{n}}~{\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}})\)¶
If \({\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}} = \href{../syntax/modules.html#syntax-elemmode}{\mathsf{passive}}\), then:
Return \(\epsilon\).
If \({\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}} = \href{../syntax/modules.html#syntax-elemmode}{\mathsf{declare}}\), then:
Return \((\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{elem{.}drop}}~x)\).
Assert: Due to validation, \({\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}}\) is some \(\href{../syntax/modules.html#syntax-elemmode}{\mathsf{active}}\) \({\href{../syntax/modules.html#syntax-tableidx}{\mathit{tableidx}}}\) \({\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}\).
Let \((\href{../syntax/modules.html#syntax-elemmode}{\mathsf{active}}~y~{{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}^\ast})\) be the destructuring of \({\href{../syntax/modules.html#syntax-elemmode}{\mathit{elemmode}}}\).
Return \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}^\ast}~(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}{.}\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~0)~(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}{.}\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~n)~(\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{table{.}init}}~y~x)~(\href{../syntax/instructions.html#syntax-instr-table}{\mathsf{elem{.}drop}}~x)\).
\({{\href{../exec/modules.html#aux-rundata}{\mathrm{rundata}}}}_{x}(\href{../syntax/modules.html#syntax-data}{\mathsf{data}}~{b^{n}}~{\href{../syntax/modules.html#syntax-datamode}{\mathit{datamode}}})\)¶
If \({\href{../syntax/modules.html#syntax-datamode}{\mathit{datamode}}} = \href{../syntax/modules.html#syntax-datamode}{\mathsf{passive}}\), then:
Return \(\epsilon\).
Assert: Due to validation, \({\href{../syntax/modules.html#syntax-datamode}{\mathit{datamode}}}\) is some \(\href{../syntax/modules.html#syntax-datamode}{\mathsf{active}}\) \({\href{../syntax/modules.html#syntax-memidx}{\mathit{memidx}}}\) \({\href{../syntax/instructions.html#syntax-expr}{\mathit{expr}}}\).
Let \((\href{../syntax/modules.html#syntax-datamode}{\mathsf{active}}~y~{{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}^\ast})\) be the destructuring of \({\href{../syntax/modules.html#syntax-datamode}{\mathit{datamode}}}\).
Return \({{\href{../syntax/instructions.html#syntax-instr}{\mathit{instr}}}^\ast}~(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}{.}\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~0)~(\href{../syntax/types.html#syntax-numtype}{\mathsf{i\scriptstyle32}}{.}\href{../syntax/instructions.html#syntax-instr-numeric}{\mathsf{const}}~n)~(\href{../syntax/instructions.html#syntax-instr-memory}{\mathsf{memory{.}init}}~y~x)~(\href{../syntax/instructions.html#syntax-instr-memory}{\mathsf{data{.}drop}}~x)\).
Note
Checking import types assumes that the module instance has already been allocated to compute the respective closed defined types. However, this forward reference merely is a way to simplify the specification. In practice, implementations will likely allocate or canonicalize types beforehand, when compiling a module, in a stage before instantiation and before imports are checked.
Similarly, module allocation and the evaluation of global and table initializers as well as element segments are mutually recursive because the global initialization values \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{g}}^\ast}\), \({\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{t}}\), and element segment contents \({{{\href{../exec/runtime.html#syntax-ref}{\mathit{ref}}}_{\mathsf{e}}^\ast}^\ast}\) are passed to the module allocator while depending on the module instance \({\href{../exec/runtime.html#syntax-moduleinst}{\mathit{moduleinst}}}\) and store \({s'}\) returned by allocation. Again, this recursion is just a specification device. In practice, the initialization values can be determined beforehand by staging module allocation such that first, the module’s own function instances are pre-allocated in the store, then the initializer expressions are evaluated in order, allocating globals on the way, then the rest of the module instance is allocated, and finally the new function instances’ \(\mathsf{module}\) fields are set to that module instance. This is possible because validation ensures that initialization expressions cannot actually call a function, only take their reference.
All failure conditions are checked before any observable mutation of the store takes place. Store mutation is not atomic; it happens in individual steps that may be interleaved with other threads.
Evaluation of constant expressions does not affect the store.
Invocation¶
\({\href{../exec/modules.html#exec-invocation}{\mathrm{invoke}}}(s, {\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}, {{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}^\ast})\)¶
Assert: Due to validation, the expansion of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}{}[{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}]{.}\href{../exec/runtime.html#syntax-funcinst}{\mathsf{type}}\) is some \(\href{../syntax/types.html#syntax-comptype}{\mathsf{func}}\) \({\href{../syntax/types.html#syntax-functype}{\mathit{functype}}}\).
Let \((\href{../syntax/types.html#syntax-comptype}{\mathsf{func}}~{\href{../syntax/types.html#syntax-functype}{\mathit{functype}}}_0)\) be the destructuring of the expansion of \(s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}{}[{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}]{.}\href{../exec/runtime.html#syntax-funcinst}{\mathsf{type}}\).
Let \({t_1^\ast}~\href{../syntax/types.html#syntax-functype}{\rightarrow}~{t_2^\ast}\) be the destructuring of \({\href{../syntax/types.html#syntax-functype}{\mathit{functype}}}_0\).
Let \(f\) be the frame \(\{ \begin{array}[t]{@{}l@{}}\href{../exec/runtime.html#syntax-frame}{\mathsf{module}}~\{ \begin{array}[t]{@{}l@{}} \}\end{array} \}\end{array}\).
If \({|{t_1^\ast}|} \neq {|{{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}^\ast}|}\), then:
Fail.
For all \(t_1\) in \({t_1^\ast}\), and corresponding \({\href{../exec/runtime.html#syntax-val}{\mathit{val}}}\) in \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}^\ast}\):
If \({\href{../exec/runtime.html#syntax-val}{\mathit{val}}}\) is not valid with type \(t_1\), then:
Fail.
Let \(k\) be the length of \({t_2^\ast}\).
Let F be the \(\mathsf{frame}\) \(f\) whose arity is \(k\).
Push the \(\mathsf{frame}\) F.
Push the values \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}^\ast}\) to the stack.
Push the value \((\href{../exec/runtime.html#syntax-ref}{\mathsf{ref{.}func}}~{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}})\) to the stack.
Execute the instruction \((\href{../syntax/instructions.html#syntax-instr-control}{\mathsf{call\_ref}}~s{.}\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}{}[{\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}]{.}\href{../exec/runtime.html#syntax-funcinst}{\mathsf{type}})\).
Pop the values \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}'}^{k}}\) from the stack.
Pop the \(\mathsf{frame}\) F from the stack.
Return \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}'}^{k}}\).
Once a module has been instantiated, any exported function can be invoked externally via its function address \({\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}}\) in the store \(s\) and an appropriate list \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}^\ast}\) of argument values.
Invocation may fail with an error if the arguments do not fit the function type. Invocation can also result in an exception or trap. It is up to the embedder to define how such conditions are reported.
Note
If the embedder API performs type checks itself, either statically or dynamically, before performing an invocation, then no failure other than traps or exceptions can occur.
The following steps are performed:
Assert: \(S.\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}[\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}]\) exists.
Let \(\href{../exec/runtime.html#syntax-funcinst}{\mathit{funcinst}}\) be the function instance \(S.\href{../exec/runtime.html#syntax-store}{\mathsf{funcs}}[\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}]\).
Let \(\href{../syntax/types.html#syntax-comptype}{\mathsf{func}}~[t_1^n] \href{../syntax/types.html#syntax-functype}{\rightarrow} [t_2^m]\) be the composite type \(\href{../valid/conventions.html#aux-expand-deftype}{\mathrm{expand}}(\href{../exec/runtime.html#syntax-funcinst}{\mathit{funcinst}}.\href{../exec/runtime.html#syntax-funcinst}{\mathsf{type}})\).
If the length \(|\href{../exec/runtime.html#syntax-val}{\mathit{val}}^\ast|\) of the provided argument values is different from the number \(n\) of expected arguments, then:
Fail.
For each value type \(t_i\) in \(t_1^n\) and corresponding value \(val_i\) in \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}^\ast\), do:
If \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_i\) is not valid with value type \(t_i\), then:
Fail.
Let \(F\) be the dummy frame \(\{ \href{../exec/runtime.html#syntax-frame}{\mathsf{module}}~\{\}, \href{../exec/runtime.html#syntax-frame}{\mathsf{locals}}~\epsilon \}\).
Push the frame \(F\) to the stack.
Push the values \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}^\ast\) to the stack.
Invoke the function instance at address \(\href{../exec/runtime.html#syntax-funcaddr}{\mathit{funcaddr}}\).
Once the function has returned, the following steps are executed:
Assert: due to validation, \(m\) values are on the top of the stack.
Pop \(\href{../exec/runtime.html#syntax-val}{\mathit{val}}_{\mathrm{res}}^m\) from the stack.
Assert: due to validation, the frame \(F\) is now on the top of the stack.
Pop the frame \(F\) from the stack.
The values \({{\href{../exec/runtime.html#syntax-val}{\mathit{val}}}_{\mathsf{res}}^{m}}\) are returned as the results of the invocation.